Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 764
Filtrar
1.
Can Vet J ; 65(2): 146-155, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38304484

RESUMO

Objective: To examine antimicrobial resistance (AMR) in commensal fecal Escherichia coli (E. coli) from extensively managed beef calves and cows in western Canada and describe the differences among cows and calves in the spring and fall. Animal: Beef cattle, cow-calf. Procedure: Antimicrobial susceptibility testing was conducted on generic E. coli isolates collected from 388 calves and 387 cows from 39 herds following calving in 2021, 419 calves from 39 herds near weaning, and 357 cows from 36 herds at pregnancy testing. Minimum inhibitory concentrations were measured with the NARMS CMV5AGNF plate for Gram-negative bacteria and interpreted using Clinical and Laboratory Standards Institute standard breakpoints for humans. Results: Only 16% (242/1551) of all isolates from 97% (38/39) of herds were resistant to ≥ 1 antimicrobial. Generic E. coli isolates were most commonly resistant to sulfisoxazole (11%, 175/1551), followed by tetracycline (9.3%, 145/1551) and chloramphenicol (3.5%, 55/1551). Isolates from calves in the spring were more likely to be resistant to sulfisoxazole, tetracycline, and chloramphenicol than those from cows in the spring or calves in the fall. Multiclass-resistant isolates were identified in 5% (39/807) of calves. Only 2 isolates recovered from cows were resistant to antimicrobials of very high importance for human health. Conclusion and clinical relevance: Most generic E. coli isolates were pansusceptible. The observed resistance patterns were consistent with earlier studies of AMR from commensal E. coli in this region. Baseline AMR data for cow-calf herds are not currently collected as part of routine surveillance, but are essential to inform antimicrobial use policy and stewardship.


Résistance aux antimicrobiens chez E. coli générique isolé dans des troupeaux vache-veau de l'Ouest canadien. Objectif: Examiner la résistance aux antimicrobiens (RAM) chez Escherichia coli de la flore fécale commensale (E. coli) provenant de veaux et de vaches de boucherie en élevage extensif dans l'ouest du Canada et décrire les différences entre les vaches et les veaux au printemps et à l'automne. Animal: Bovins de boucherie, vache-veau. Procédure: Des tests de sensibilité aux antimicrobiens ont été effectués sur des isolats génériques d'E. coli collectés auprès de 388 veaux et 387 vaches de 39 troupeaux après le vêlage en 2021, de 419 veaux de 39 troupeaux à l'approche du sevrage et de 357 vaches de 36 troupeaux lors des tests de gestation. Les concentrations minimales inhibitrices ont été mesurées avec la plaque NARMS CMV5AGNF pour les bactéries à Gram négatif et interprétées à l'aide des seuils standard pour les humains du Clinical and Laboratory Standards Institute. Résultats: Seulement 16 % (242/1 551) de tous les isolats provenant de 97 % (38/39) des troupeaux étaient résistants à ≥ 1 antimicrobien. Les isolats génériques d'E. coli étaient le plus souvent résistants au sulfisoxazole (11 %, 175/1 551), suivi de la tétracycline (9,3 %, 145/1 551) et du chloramphénicol (3,5 %, 55/1 551). Les isolats provenant des veaux au printemps étaient plus susceptibles d'être résistants au sulfisoxazole, à la tétracycline et au chloramphénicol que ceux provenant des vaches au printemps ou des veaux à l'automne. Des isolats résistants à plusieurs classes ont été identifiés chez 5 % (39/807) des veaux. Seuls deux isolats récupérés chez des vaches étaient résistants à des antimicrobiens de très haute importance pour la santé humaine. Conclusion et pertinence clinique: La plupart des isolats génériques d'E. coli étaient sensibles à l'ensemble des antimicrobiens. Les profils de résistance observés concordaient avec les études antérieures sur la RAM provenant d'E. coli commensal dans cette région. Les données de base sur la RAM pour les troupeaux vache-veau ne sont pas actuellement recueillies dans le cadre de la surveillance de routine, mais elles sont essentielles pour éclairer la politique et la gestion de l'utilisation des antimicrobiens.(Traduit par Dr Serge Messier).


Assuntos
Anti-Infecciosos , Doenças dos Bovinos , Infecções por Escherichia coli , Feminino , Humanos , Animais , Bovinos , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Sulfisoxazol , Canadá/epidemiologia , Farmacorresistência Bacteriana , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Anti-Infecciosos/farmacologia , Cloranfenicol , Tetraciclina
2.
J Food Prot ; 87(1): 100192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949412

RESUMO

Antimicrobial resistance (AMR) trends in 114 generic Escherichia coli isolated from channel catfish and related fish species were investigated in this study. Of these, 45 isolates were from commercial-sized channel catfish harvested from fishponds in Alabama, while 69 isolates were from Siluriformes products, accessed from the U.S. Department of Agriculture Food Safety and Inspection Service' (FSIS) National Antimicrobial Resistance Monitoring System (NARMS) program. Antibiotic susceptibility testing and whole genome sequencing were performed using the GenomeTrakr protocol. Upon analysis, the fishpond isolates showed resistance to ampicillin (44%), meropenem (7%) and azithromycin (4%). The FSIS NARMS isolates showed resistance to tetracycline (31.9%), chloramphenicol (20.3%), sulfisoxazole (17.4%), ampicillin (5.8%) and trimethoprim-sulfamethoxazole, nalidixic acid, amoxicillin-clavulanic acid, azithromycin and cefoxitin below 5% each. There was no correlation between genotypic and phenotypic resistance in the fishpond isolates, however, there was in NARMS isolates for folate pathway antagonists: Sulfisoxazole vs. sul1 and sul2 (p = 0.0042 and p < 0.0001, respectively) and trimethoprim-sulfamethoxazole vs. dfrA16 and sul1 (p = 0.0290 and p = 0.013, respectively). Furthermore, correlations were found for tetracyclines: Tetracycline vs. tet(A) and tet(B) (p < 0.0001 each), macrolides: Azithromycin vs. mph(E) and msr(E) (p = 0.0145 each), phenicols: Chloramphenicol vs. mdtM (p < 0.0001), quinolones: Nalidixic acid vs. gyrA_S83L=POINT (p = 0.0004), and ß-lactams: Ampicillin vs. blaTEM-1 (p < 0.0001). Overall, we recorded differences in antimicrobial susceptibility testing profiles, phenotypic-genotypic concordance, and resistance to critically important antimicrobials, which may be a public health concern.


Assuntos
Escherichia coli , Ictaluridae , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Azitromicina/farmacologia , Tetraciclina/farmacologia , Ácido Nalidíxico/farmacologia , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Sulfisoxazol/farmacologia , Testes de Sensibilidade Microbiana , Ampicilina/farmacologia , Cloranfenicol
3.
Chemosphere ; 343: 140299, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769924

RESUMO

In the present work, a cobalt-doped carbon nitride nanotubes (Co-CNt) was synthesized via self-assembly process. Contributed to the narrow band gap, enlarged specific surface area and abundant active sites, Co-CNt has excellent photoelectric properties and superior performance than pristine CN in sulfisoxazole (SIZ) degradation under blue light irradiation, which achieved 100% removal within 40 min. Meanwhile, the system not only exhibited practical applicability by efficiently degrading SIZ, but also generating high levels of H2O2. Moreover, the Co-CNt/visible light system shows superior operability over a wide pH range, micro-concentration contaminants, various anions, water matrices and other sulfonamides with promising catalytic stability and applicability. The contribution of RSs in the degradation process were elucidated based on radical scavenging and spin-trapped tests, clarifying that O2·- and h+ majorly dominated the process. In addition, 4 probable degradation pathways of SIZ were provided and the generated intermediates' toxicity were evaluated. Overall, this study successfully synthesized a self-assembled 1D tubular photocatalyst with Co-doped and demonstrated the potential Co-CNt/visible light system for environmental remediation, providing a promising approach for the development of photocatalysis.


Assuntos
Antibacterianos , Nanotubos , Peróxido de Hidrogênio , Sulfanilamida , Sulfisoxazol , Catálise
4.
Adv Biol (Weinh) ; 7(12): e2300264, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37566766

RESUMO

Oxidative stress leads to a lower success rate of clinical islet transplantation. Here, FDA-approved compounds are screened for their potential to decrease oxidative stress and to protect or enhance pancreatic islet viability and function. Studies are performed on in vitro "pseudoislet" spheroids, which are pre-incubated with 1280 different compounds and subjected to oxidative stress. Cell viability and oxidative stress levels are determined using a high-throughput fluorescence microscopy pipeline. Initial screening on cell viability results in 59 candidates. The top ten candidates are subsequently screened for their potential to decrease induced oxidative stress, and eight compounds efficient reduction of induced oxidative stress in both alpha and beta cells by 25-50%. After further characterization, the compound sulfisoxazole is found to be the most capable of reducing oxidative stress, also at short pre-incubation times, which is validated in primary human islets, where low oxidative stress levels and islet function are maintained. This study shows an effective screening strategy with 3D cell aggregates based on cell viability and oxidative stress, which leads to the discovery of several compounds with antioxidant capacity. The top candidate, sulfisoxazole is effective after a 30 min pre-incubation, maintains baseline islet function, and may help alleviate oxidative stress in pancreatic islets.


Assuntos
Células Secretoras de Insulina , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Sulfisoxazol/metabolismo , Sulfisoxazol/farmacologia , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Estresse Oxidativo , Transplante das Ilhotas Pancreáticas/métodos
5.
PLoS One ; 18(7): e0282897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37486902

RESUMO

The emergence of antimicrobial-resistant organisms at the human-animal-environment interface has raised global concern prompting governments and various stakeholders to take action. As a part of the stewardship initiative, Canadian turkey producers have implemented an antimicrobial use (AMU) strategy to manage antimicrobial resistance (AMR) in their sector. This study evaluated farm-level AMU and AMR data collected between 2016 and 2021 in major turkey-producing provinces/regions through the Canadian Integrated Program for Antimicrobial Resistance Surveillance to assess the progress of the strategy by characterizing the prevalence of homologous and multidrug resistance (MDR) in Escherichia coli isolated from turkeys. Multivariable mixed-effect logistic regression models assessed temporal and provincial/regional variations in AMR and MDR. Negative binomial regression models examined the temporal and regional variations in the total AMU. The total AMU (measured in mg/kg turkey biomass) significantly decreased in all provinces/regions in 2020 and 2021. Escherichia coli isolates from turkey flocks showed a significant decrease in resistance to gentamicin, sulfisoxazole, and tetracyclines during the six-year study period, consistent with the timing of the AMU reduction strategy. The prevalence of MDR isolates was significantly lower in 2020 and 2021 compared to 2016. Higher prevalence was observed in the Western region compared to Québec and Ontario. Two common AMR patterns were identified: ampicillin-streptomycin-tetracyclines and streptomycin-sulfisoxazole-tetracyclines. These AMR patterns indicate possible cross-resistances (same class), co-selection (unrelated classes) for resistance, or potential carryover of resistance determinants from previous production cycles. The decreasing prevalence of resistance to homologous antimicrobials, MDR, and AMU quantity are suggestive that the turkey sector's AMU strategy is achieving its desired impact. However, antimicrobials previously eliminated for preventive use in turkey flocks and the use of highly important antimicrobials in human medicine suggest that the AMU reduction strategy should be monitored and re-evaluated periodically to mitigate the emergence of MDR bacteria and safeguard animal and public health.


Assuntos
Antibacterianos , Gestão de Antimicrobianos , Animais , Humanos , Escherichia coli , Sulfisoxazol , Perus , Prevalência , Farmacorresistência Bacteriana , Ontário , Estreptomicina
6.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372934

RESUMO

Laccases are multicopper oxidases (MCOs) with a broad application spectrum, particularly in second-generation ethanol biotechnology and the bioremediation of xenobiotics and other highly recalcitrant compounds. Synthetic pesticides are xenobiotics with long environmental persistence, and the search for their effective bioremediation has mobilized the scientific community. Antibiotics, in turn, can pose severe risks for the emergence of multidrug-resistant microorganisms, as their frequent use for medical and veterinary purposes can generate constant selective pressure on the microbiota of urban and agricultural effluents. In the search for more efficient industrial processes, some bacterial laccases stand out for their tolerance to extreme physicochemical conditions and their fast generation cycles. Accordingly, to expand the range of effective approaches for the bioremediation of environmentally important compounds, the prospection of bacterial laccases was carried out from a custom genomic database. The best hit found in the genome of Chitinophaga sp. CB10, a Bacteroidetes isolate obtained from a biomass-degrading bacterial consortium, was subjected to in silico prediction, molecular docking, and molecular dynamics simulation analyses. The putative laccase CB10_180.4889 (Lac_CB10), composed of 728 amino acids, with theoretical molecular mass values of approximately 84 kDa and a pI of 6.51, was predicted to be a new CopA with three cupredoxin domains and four conserved motifs linking MCOs to copper sites that assist in catalytic reactions. Molecular docking studies revealed that Lac_CB10 had a high affinity for the molecules evaluated, and the affinity profiles with multiple catalytic pockets predicted the following order of decreasing thermodynamically favorable values: tetracycline (-8 kcal/mol) > ABTS (-6.9 kcal/mol) > sulfisoxazole (-6.7 kcal/mol) > benzidine (-6.4 kcal/mol) > trimethoprim (-6.1 kcal/mol) > 2,4-dichlorophenol (-5.9 kcal/mol) mol. Finally, the molecular dynamics analysis suggests that Lac_CB10 is more likely to be effective against sulfisoxazole-like compounds, as the sulfisoxazole-Lac_CB10 complex exhibited RMSD values lower than 0.2 nm, and sulfisoxazole remained bound to the binding site for the entire 100 ns evaluation period. These findings corroborate that LacCB10 has a high potential for the bioremediation of this molecule.


Assuntos
Bacteroidetes , Lacase , Lacase/metabolismo , Simulação de Acoplamento Molecular , Bacteroidetes/metabolismo , Biodegradação Ambiental , Sulfisoxazol , Xenobióticos/metabolismo , Simulação de Dinâmica Molecular , Bactérias/metabolismo
7.
Poult Sci ; 102(6): 102655, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37030258

RESUMO

The emergence of antimicrobial resistance (AMR) in Salmonella from turkeys has raised a food safety concern in Canada as certain serovars have been implicated in human salmonellosis outbreaks in recent years. While several studies evaluated AMR in broiler chickens in Canada, there are limited studies that assess AMR in turkey flocks. This study analyzed data collected between 2013 and 2021 by the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) farm turkey surveillance program to determine the prevalence of AMR and differences in resistance patterns among Salmonella serovars recovered from turkey flocks. Salmonella isolates were tested for susceptibility to 14 antimicrobials using a microbroth dilution method. Hierarchical clustering dendrograms were constructed to compare the individual AMR status of Salmonella serovars. Differences in the probability of resistance between Salmonella serovars were determined using generalized estimating equation logistic regression models to account for farm-level clustering. Of the 1,367 Salmonella isolates detected, 55.3% were resistant to at least one antimicrobial and 25.3% were multidrug resistant (MDR) (resistant to ≥3 antimicrobial classes). The Salmonella isolates exhibited high resistance to tetracycline (43.3%), streptomycin (47.2%), and sulfisoxazole (29.1%). The 3 most frequently occurring serovars were S. Uganda (22.9%), S. Hadar (13.5%), and S. Reading (12.0%). Streptomycin-sulfisoxazole-tetracycline (n = 204) was the most frequent MDR pattern identified. Heatmaps showed that S. Reading exhibited coresistance to the quinolone class antimicrobials, ciprofloxacin, and nalidixic acid; S. Heidelberg to gentamicin and sulfisoxazole; and S. Agona to ampicillin and ceftriaxone. Salmonella Hadar isolates had higher odds of resistance to tetracycline (OR: 152.1, 95% CI: 70.6-327.4) while the probability of being resistant to gentamicin and ampicillin was significantly higher in S. Senftenberg than in all the other serovars. Moreover, S. Uganda had the highest odds of being MDR (OR: 4.7, 95% CI: 3.7-6.1). The high resistance observed warrants a reassessment of the drivers for AMR, including AMU strategies and other production factors. Differences in AMR patterns highlight the need to implement serovar-specific mitigation strategies.


Assuntos
Anti-Infecciosos , Salmonella enterica , Animais , Humanos , Antibacterianos/farmacologia , Canadá , Sorogrupo , Perus , Sulfisoxazol , Farmacorresistência Bacteriana , Galinhas , Testes de Sensibilidade Microbiana/veterinária , Anti-Infecciosos/farmacologia , Tetraciclina , Gentamicinas , Ampicilina , Estreptomicina , Farmacorresistência Bacteriana Múltipla
8.
Environ Sci Technol ; 57(47): 18473-18482, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36727553

RESUMO

Permanganate (Mn(VII)) is extensively applied in water purification due to its stability and ease of handling, but it is a mild oxidant for trace organic contaminants (TrOCs). Hence, there is significant interest in strategies for enhancing reaction kinetics, especially in combination with efficient and economical carbocatalysts. This study compared the performance of four carbocatalysts (graphite, graphene oxide (GO), reduced-GO (rGO), and nitrogen-doped rGO (N-rGO)) in accelerating sulfisoxazole (SSX) oxidation by Mn(VII) and found that GO exhibited the greatest catalytic performance. Besides, the Mn(VII)/GO system shows desirable capacities to remove a broad spectrum of TrOCs. We proposed that the degradation of SSX in Mn(VII)-GO suspensions follows two routes: (i) direct oxidation of SSX by Mn species [both Mn(VII) and in situ formed MnO2(s)] and (ii) a carbocatalyst route, where GO acts as an electron mediator, accepting electrons from SSX and transferring them to Mn(VII). We developed a mathematical model to show the contribution of each parallel pathway and found one-electron transfer is primarily responsible for accelerating SSX removal in the Mn(VII)/GO system. Findings in this study showed that GO provides a simple and effective strategy for enhancing the reactivity of Mn(VII) and provided mechanistic insights into the GO-catalyzed redox reaction between SSX and Mn(VII).


Assuntos
Óxidos , Sulfisoxazol , Oxirredução , Compostos de Manganês
9.
Mol Divers ; 27(4): 1735-1749, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36136229

RESUMO

To discover alternative substances to compounds used to treat many diseases, especially treating Alzheimer's disease (AD) and Parkinson's disease targeting carbonic anhydrase (hCA) and acetylcholinesterase (AChE) enzymes, is important. For this purpose, a series of novel bis-ureido-substituted sulfaguanidine (SG1-4) and sulfisoxazole (SO1-4) derivatives were synthesized, and their inhibitory capacities were screened against hCA isoenzymes (hCA I and II) and AChE. Possible binding mechanisms of inhibitors to the active site were elucidated by in silico studies, and the results were supported by in vitro results. Moreover, the percent radical scavenging capacities of the derivatives were also evaluated. The derivatives (SG1-4 and SO1-4) were more effective against hCAs compared to standard drug acetazolamide (KI values of 98.28-439.17 nM for hCA I and II, respectively) and exhibited the highest inhibition with the KIs in the ranges of 2.54 ± 0.50-41.02 ± 7.52 nM for hCA I, 11.20 ± 2.97-67.14 ± 13.58 nM for hCA II, and 257.60 ± 27.84-442.60 ± 52.13 nM for AChE. Also, compounds SG1 and SO1 also showed ABTS radical scavenging activity at the rate of 70% and 78%, respectively. These results will contribute to the literature for the rational design and synthesis of new potent and selective inhibitors targeting hCAs and AChE with multifunctional effects such as radical scavenging as well as inhibition. This study focused on the synthesis and inhibitory effects of bis-ureido-substituted sulfaguanidine (SG1-4) and sulfisoxazole (SO1-4) derivatives against human hCA I and II isoforms and AChE. In order to test synthesized derivatives' free radical scavenging potentials were the DPPH and ABTS assays. In silico studies elucidated possible binding mechanisms of inhibitors to the active site.


Assuntos
Anidrases Carbônicas , Humanos , Anidrases Carbônicas/metabolismo , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Sulfisoxazol , Sulfaguanidina , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Relação Estrutura-Atividade , Estrutura Molecular
10.
Foodborne Pathog Dis ; 20(1): 7-16, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577050

RESUMO

Antimicrobial-resistant bacteria isolated from food animals pose a major health threat to the public on this planet. This study aimed to determine the susceptibility profiles of Escherichia coli isolated from cattle and pig fecal samples and investigate the molecular characteristics of extended-spectrum ß-lactamase (ESBL)-producing E. coli using gene identification, conjugation, and Southern blot approach. Overall 293 E. coli were recovered from cattle (120 isolates) and pigs (173 isolates) in 7 provinces of Korea during 2017-2018. Ampicillin, chloramphenicol, streptomycin, and sulfisoxazole resistance rates were the highest in pigs' isolates (>60%, p ≤ 0.001) compared to that in cattle (3-39%). Multidrug resistance (MDR) was higher in pig isolates (73%) than in cattle (31%), and the MDR profile usually includes streptomycin, sulfisoxazole, and tetracycline. Resistance to critically important antimicrobials such as ceftiofur, colistin, and ciprofloxacin was higher in weaners than those from finishers in pigs. The qnrS gene was detected in 13% of the pig isolates. Eight isolates from pigs and one isolate from cattle were identified as ESBL-producers and ESBL genes belonged to blaCTX-M-55 (n = 4), blaCTX-M-14 (n = 3), and blaCTX-M-65 (n = 2). Notably, the blaCTX-M-65 and qnrS1 genes were found to be carried together in an identical plasmid (IncHI2) in two isolates from finisher pigs. The blaCTX-M-carrying isolates belonged to phylogenetic groups B1 (n = 4), B2 (n = 2), A (n = 2), and D (n = 1). The blaCTX-M genes and non-ß-lactam resistance traits were transferred to the E. coli J53 recipient from seven blaCTX-M-positive strains isolated from pigs. The blaCTX-M genes belonged to the IncI1α, IncFII, and IncHI2 plasmids and are also associated with the ISEcp1, IS26, IS903, and orf477 elements. These findings suggested the possibility of blaCTX-M-carrying E. coli transmission to humans through direct contact with cattle and pigs or contamination of food products.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Animais , Bovinos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , beta-Lactamases/genética , Farmacorresistência Bacteriana/genética , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Filogenia , Plasmídeos/genética , República da Coreia/epidemiologia , Estreptomicina/farmacologia , Sulfisoxazol/farmacologia , Suínos
11.
Molecules ; 27(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335394

RESUMO

In this work, new electrochemical sensors based on the modification of glassy carbon electrode (GCE) with multiwalled carbon nanotubes (MWCNTs)-rare metal oxides (REMO) nanocomposites were fabricated by drop-to-drop method of MWCNTs-REMO dispersion in ethanol. REMO nanoparticles were synthesized by precipitation followed by hydrothermal treatment at 180 °C in absence and presence of TritonTM X-100 surfactant. Cyclic voltammetry (CV) analysis using MWCNTs-CeO2@GCE and MWCNTs-Yb2O3@GCE sensors were used for the analysis of sulfisoxazole (SFX) drug in water samples. The results of CV analysis showed that MWCNTs-REMO@GCE sensors have up to 40-fold higher sensitivity with CeO2 compared to the bare GCE sensor. The estimated values of the limit of detection (LoD) of this electrochemical sensing using MWCNTs-CeO2@GCE and MWCNTs-Yb2O3@GCE electrodes reached 0.4 and 0.7 µM SFX in phosphate buffer pH = 7, respectively. These findings indicate that MWCNTs-REMO@GCE electrodes are potential sensors for analysis of sulfonamide drugs in water and biological samples.


Assuntos
Nanotubos de Carbono , Técnicas Eletroquímicas/métodos , Eletrodos , Óxidos , Fosfatos , Sulfisoxazol
12.
Environ Sci Pollut Res Int ; 29(30): 46200-46213, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35167019

RESUMO

A novel Ag/BiOBr/CeO2 composite was successfully prepared for the first time, which had excellent performance in degrading sulfisoxazole (SSX) under visible light irradiation. The as-prepared samples were characterized by SEM, XRD, UV-vis DRS and BET et al. The composite of 10% Ag/BiOBr/CeO2 showed the best photocatalytic activity and more than 99.5% SSX can be removed within 20 min. It exhibited the highest k value of 0.2428 min-1, which was about 39.7 times higher than pure BiOBr (6.11 × 10-3 min-1) and 22.1 times higher than BiOBr/CeO2 (1.09 × 10-2 min-1), respectively. The addition of Ag significantly improved the absorption rate of visible light and the separation rate of photogenerated electron-hole pairs. The initial pH and dosage of samples could have an influence on the photocatalytic activity. The radical trapping experiments proved that ·O2- and h+ were the main active species involved in photocatalytic degradation. Finally, the synthesized catalyst maintained excellent photocatalytic activity after 5 repeated cycles, which indicated the extraordinary stability and recyclability of Ag/BiOBr/CeO2.


Assuntos
Bismuto , Sulfisoxazol , Bismuto/química , Catálise , Luz
13.
Microbiol Spectr ; 10(1): e0161721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138151

RESUMO

A total of 1,400 samples of food animals (pigs, chickens, and ducks) were collected between July and September 2019 in China to uncover the prevalence of E. fergusonii and its potential role in the evolution of antimicrobial resistance (AMR). An isolation of E. fergusonii was performed and pulsed-field gel electrophoresis (PFGE) was used to uncover the genetic relationship. The AMR of E. fergusonii isolates was comprehensively characterized using broth microdilution-based antimicrobial susceptibility testing, S1-PFGE, southern hybridization, whole-genome sequencing, and in-depth bioinformatics analysis. As a result, a total of 133 E. fergusonii isolates were obtained. These isolates could be grouped into 41 PFGE subclades, suggesting a diverse genetic relationship. The resistance phenotypes of sulfafurazole (97.74%) and tetracycline (94.74%) were the most frequently found. Of the E. fergusonii isolates, 51.88% were extended spectrum beta-lactamase (ESBL)-positive. Forty-three different AMR genes were revealed based on 25 genome sequences harboring mcr-1. Briefly, aph(6)-Id, aph(3'')-Ib and tet(A) genes were the most frequently observed, with the highest rate being 76.00% (19/25). Three mcr-1-harboring plasmids were identified after Nanopore sequencing, including pTB31P1 (IncHI2-IncHI2A, 184,652 bp), pTB44P3 (IncI2, 62,882 bp), and pTB91P1 (IncHI2-IncHI2A, 255,882 bp). Additionally, 25 E. fergusonii isolates harboring mcr-1 were clustered together with other E. fergusonii isolates from different regions and sources available in GenBank, suggesting a possible random process of mcr-1 transmission in E. fergusonii. In conclusion, E. fergusonii is widespread in food animals in China and might be an important reservoir of AMR genes, especially mcr-1, and facilitate the evolution of AMR. IMPORTANCEE. fergusonii, a member of the genus Escherichia, has been reported to transmit via the food chain and cause diseases in humans. However, the prevalence of multidrug-resistant E. fergusonii, especially mcr-1-positive E. fergusonii isolates, has rarely been reported. Here, we collected 1,400 samples from food animals in three provinces of China and obtained 133 E. fergusonii isolates (9.5%). We found that the prevalence of E. fergusonii isolates was diverse, with high levels of antimicrobial resistance. Among them, 18.8% E. fergusonii isolates carried the colistin resistance gene mcr-1. Thus, E. fergusonii may facilitate the evolution of colistin resistance as a reservoir of mcr-1. As far as we know, the prevalence and AMR of E. fergusonii in the food animals in this study was first reported in China. These findings increase our understanding of the role of E. fergusonii in public health and the evolution of antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Galinhas/microbiologia , Farmacorresistência Bacteriana , Patos/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia/efeitos dos fármacos , Suínos/microbiologia , Animais , China , Escherichia/classificação , Escherichia/genética , Escherichia/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Plasmídeos/metabolismo , Sulfisoxazol/farmacologia , Tetraciclina/farmacologia
14.
Mar Pollut Bull ; 174: 113320, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35090301

RESUMO

It's a new perspective to explore the influences of chromophoric dissolved organic matter (CDOM) components and environmental factors on the removal of sulfisoxazole (SIX) from the water matrix. Reactive intermediates (RIs) trapping experiments demonstrated that excited triplet-state CDOM (3CDOM⁎) played a dominant promoting role (54.11%) in the CDOM-mediated SIX indirect photodegradation. Additionally, terrestrial humic-like (C1, C3 and C4) and marine humic-like (C2) fluorescent components were identified by parallel factor (PARAFAC) analysis of CDOM excitation-emission matrix spectroscopy (EEMs). C1 and C4 were significantly correlated (R2 > 0.91) with the SIX degradation rate owing to their higher productivity of RIs and a greater contribution to the production of 3CDOM⁎ compared to others. Salinity, pH and HCO3- were conducive to the SIX indirect photodegradation, while metal ions (Fe3+ and Cu2+), halogen ions (Cl- and Br-) and NO3- were opposite. These findings are essential for understanding the environmental fate of SIX in coastal waters.


Assuntos
Matéria Orgânica Dissolvida , Salinidade , Halogênios , Concentração de Íons de Hidrogênio , Compostos Orgânicos , Fotólise , Espectrometria de Fluorescência , Sulfisoxazol , Água
15.
Adv Sci (Weinh) ; 9(5): e2103245, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34927389

RESUMO

Despite their potent antitumor activity, clinical application of immune checkpoint inhibitors has been significantly limited by their poor response rates (<30%) in cancer patients, primarily due to immunosuppressive tumor microenvironments. As a representative immune escape mechanism, cancer-derived exosomes have recently been demonstrated to exhaust CD8+ cytotoxic T cells. Here, it is reported that sulfisoxazole, a sulfonamide antibacterial, significantly decreases the exosomal PD-L1 level in blood when orally administered to the tumor-bearing mice. Consequently, sulfisoxazole effectively reinvigorates exhausted T cells, thereby eliciting robust antitumor effects in combination with anti-PD-1 antibody. Overall, sulfisoxazole regulates immunosuppression through the inhibition of exosomal PD-L1, implying its potential to improve the response rate of anti-PD-1 antibodies.


Assuntos
Antígeno B7-H1 , Exossomos , Inibidores de Checkpoint Imunológico , Neoplasias , Sulfisoxazol , Animais , Antígeno B7-H1/antagonistas & inibidores , Exossomos/efeitos dos fármacos , Exossomos/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade , Camundongos , Neoplasias/tratamento farmacológico , Sulfisoxazol/farmacologia , Sulfisoxazol/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos
16.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445408

RESUMO

The mechanism of sulfisoxazole (SFF) selective removal by photocatalysis in the presence of titanium (IV) oxide (TiO2) and iron (III) chloride (FeCl3) was explained and the kinetics and degradation pathways of SFF and other antibiotics were compared. The effects of selected inorganic ions, oxygen conditions, pH, sorption processes and formation of coordination compounds on the photocatalytic process in the presence of TiO2 were also determined. The Fe3+ compounds added to the irradiated sulfonamide (SN) solution underwent surface sorption on TiO2 particles and act as acceptors of excited electrons. Most likely, the SFF degradation is also intensified by organic radicals or cation organic radicals. These radicals can be initially generated by reaction with electron holes, hydroxyl radicals and as a result of electron transfer mediated by iron ions and then participate in propagation processes. The high sensitivity of SFF to decomposition caused by organic radicals is associated with the steric effect and the high bond polarity of the amide substituent.


Assuntos
Antibacterianos/química , Sulfonamidas/química , Titânio/química , Catálise , Concentração de Íons de Hidrogênio , Cinética , Compostos Orgânicos , Fotólise , Sulfisoxazol/química , Purificação da Água
17.
Poult Sci ; 100(7): 101141, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34089935

RESUMO

The aim of this study was to determine the prevalence, serovar distribution, antimicrobial resistance, and genotypic analyses of the dominating serovars of Salmonella in chickens from a national study in Korea. Between 2017 and 2018, a total of 550 chicken samples were collected from the top 12 integrated broiler chicken operations in Korea. Salmonella was isolated from 117 (32.5%) chicken feces and 19 (10.0%) retail chicken meat sources. Ten serovars were identified, and the most common Salmonella serovar was Salmonella ser. Albany (50 isolates, 36.8%), followed by S. Enteritidis (38 isolates, 27.9%), and S. Montevideo (23 isolates, 16.9%) isolated from 6, 10, and 6 operations, respectively. A total of 35 (25.7%) isolates were with the ACSSuTN (ampicillin, chloramphenicol, streptomycin, sulfisoxazole, tetracycline, and nalidixic acid) resistance pattern, with high prevalence of this resistance pattern in S. Albany (29 isolates, 58.0%). A total of 35 PFGE types were identified among Salmonella isolates of the serovars Albany, Enteritidis, Virchow, Montevideo, and Senftenberg, while 11 distinct types of PFGE patterns were found among S. Albany isolates, which showed an overall homology similarity of higher than 85%. Among these 35 PFGE types, 22 PFGE types corresponded to 32 isolates from samples limited to one operation, and the other 13 PFGE types corresponded to 72 isolates from samples widely distributed among different operations. These results highlighted rapid colony dissemination of multidrug-resistant S. Albany in chicken all over Korea after it first appeared in 2016; furthermore, the spread of Salmonella colonies between various integrated operations was common, and several operations played an important role in Salmonella carriage and transmission in Korea.


Assuntos
Galinhas , Salmonella enterica , Ampicilina , Animais , Antibacterianos/farmacologia , Cloranfenicol , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana/veterinária , Ácido Nalidíxico , República da Coreia , Salmonella , Sorogrupo , Estreptomicina , Sulfisoxazol , Tetraciclina
20.
Vet Ital ; 57(4): 297-304, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35593494

RESUMO

Salmonellosis is currently the second most common zoonosis in European Union but in the 6-years periods, between 2012 and 2017, there has been a significant decrease trend in the yearly number of infections caused by Salmonella. In Italy, S. Typhimurium and monophasic S. Typhimurium represent the most prevalent serotypes. In this paper, we investigated these two serovars isolated from 2012 to 2017 in Abruzzo and Molise regions. A set of 345 strains isolated from human sporadic cases, surface water, food and animals were collected and analyzed. Monophasic S. Typhimurium strains were found to be resistant to streptomycin, sulfisoxazole, ampicillin, tetracycline and nalidixic acid, while S. Typhimurium isolates showed high levels of resistance to tetracycline, sulfisoxazole and ampicillin. The 5-loci Multilocus Variable-Number Tandem Repeat Analysis (MLVA) identified 88 genotypes (GT), six of which were common for the two serovars. Several MLVA profiles were shared by human and non-human isolates. MLVA had sufficient typing resolution for epidemiological studies of S. Typhimurium but demonstrated poor discriminatory in trace-back study of monophasic S. Typhimurium.


Assuntos
Salmonella typhimurium , Sulfisoxazol , Ampicilina , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Itália/epidemiologia , Salmonella typhimurium/genética , Tetraciclinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...